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Manifold reconnection in chaotic regimes
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In this paper we extend the concept of separatrix reconnection into chaotic regimes. We show that even
under chaotic conditions one can still understand enhanced diffusion in phase space in terms of relatively
smooth rearrangements of stable and unstable manifolds of unstable fixed [B®183-651X98)04112-9

PACS numbd(s): 05.45+b

Two-dimensional nonmonotonic conservative maps aréiappens is that even in chaotic regimes the unstable or stable
recognized to be of relevance in modeling a number of nonmanifolds of originally hyperbolic points may still make a
linear systems, for instance, laser acceleration of chargedansition from a situation where their mutual crossings are
particles| 1—6], and the nonlinear flow of magnetic field lines absent—or, actually, relatively infrequent—to a situation
in fusion machines such as tokamaks and otfig/8. As  Where the mutual crossings become very frequent. We shall
opposed to more traditional monotonic versions, nonmonolllustrate the process with a set of figures from which one
tonic maps are characterized by frequency curves that are n¥fl! be able to see that this change in topology is reminiscent
monotonic functions of the action variabig]. In laser ac-  Of the corresponding behavior of regular regimes. The mac-
celerators, nonmonotonicity arises as a result of the relativiOSCopic result of this type of transition is that as soon as the
istic mass variation of the accelerating partidlg} in toka- ~ Crossings become frequent, stochastic diffusion undergoes an
maks, it arises as a result of the geometrical peculiarities ofhhancement from slower to faster rates. _
the relevant background magnetic fields. In any case, non- From this point on, the dlscu_ssmn relies on more technical
monotonicity has a strong influence on the types of bifurcagrounds. Therefore here we introduce the model map we
tions that can occur in the associated nonlinear dynamics. Shall be working with. The map is called the nonmonotonic

Period doubling cascades of periodic orbits generally prefwist map, and reads
cede a transition to chaotic regimes of these orbits, but tan- .
gent bifurcations bear no direct relationship to nonintegrabil- Prt1=Pn=KSiNg 1, dni1=dntf(Pasa), @)
ity. Indeed, it has been argued that some of the effect
preceding a tangent bifurcation even become meaningless
nonintegrable regimekl]. To analyze the subject, consider
the process depicted in the integrable case of Ei[2] is of foremost importance here. It is in fact a measure of the

Two chains of fixed points undergo a reconnection, startin . : . .
from the leftmost panel. Before a tangent bifurcation Wheregrrequency with which the discrete orbits move on tipe)

elliptic fixed points collapse against hyperbolic points, thephase space. In standard monotonic maps It ré@uls=p,

; - : “but, as we wish to incorporate nhonmonotonic features, we
separatrices defining the upper chain undergo a reconnectiri d a quadratic term such thiabecomesf(p) = p— ap? as
process with those defining the lower chain—this is seen in q P)=p—ap

Fig. 4b). It is precisely due to the smoothness caused b '?eRjé'n[i]'C'Sﬂtg%vﬁﬁsri&?;&isloecf;etggvelylf(go)n”\;\:)hneortgmc
integrability that the reconnection can be seen so clearl q y [BE @)

This is why reconnection is thought to be of more relevancif(p)/dpzo' Map (1) has _several fam"'?s O.f fixed points.
in integrable cases. In contrast, the process is generally r _et. us'focus here on the first order familgeriod 1 orbit}
garded as of little significance in chaotic regimes because pyhich is characterized byy..1=py and ¢ 1= ¢"Jf2m77’
those situations all separatrices—which shall be correctl ith m an qrbﬂrary positive O,[ negative Integer, we shall
called stable and unstable manifolds—would be already infefer to the fixed points apf, , ¢r). Equation(1) |nfor*ms us
terlaced with little global response as relevant control paramthat_the fixed points are located 4;,=0,7 and p;=[1
eters are varied. Speaking in more precise terms, effects ag&-V1—8mma/(2a)]. In this case of period 1 orbits, let us
sociated with reconnections are thought to be unobservablave a brief look at the distribution of the various fixed
when the elliptic fixed points of the reconnecting chains un-points over the phase space. For=0 one has four points
dergo full cascades of period doublingmforeany sort of located atpy =0, 1/v. If m>0 the fixed points lie in the
mutual contact of the relevant manifolds takes place. finite interval 0<p<1/a, and if m<O the points lie in any
While reconnections, as defined in REf], do not occur  of the intervals—oe<p<0 or lla<p<+=. The existence
in fully chaotic regimes, topological rearrangements of stablef points located in the finite interval must satisfy the condi-
and unstable manifolds are possible. We shall use the tertion m<1/(8ma), so it may well happen that no fixed point
“manifold reconnection” to describe such processes. Whatan actually be found there i is large enough. What hap-

Where (., ¢) is a pair of discrete canonical variablep-rep-
P&senting an action and¢ a 2w-periodic angular
coordinate—and where the map is sympletic. Funcfigm)

1063-651X/98/565)/80134)/$15.00 PRE 58 8013 © 1998 The American Physical Society



8014 BRIEF REPORTS PRE 58
(b) (©

V/ —

10 eSS

S

V/
l
/
!

-150 -50 0 50 150 -150 -50 0 50 150

¢ ¢ ¢

FIG. 1. Reconnection in a purely integrable case. The figure is constructed with an integrable one-degree-of-freedom Hamiltonian of the
type H=p?/2— ap®/3—k cosp with (p,¢) as continuous canonical variablés=5 anda=0.10 in(a), 0.129 in(b), and 0.16 in(c). p is
nondimensional, and is given in degrees.

pens is that as grows from some small value, all the fixed is that the advance within any particular resonant island
points originally located in the subintervak(p<1/(2a), tends to be slow. One can thus approximpie ;—p,, and
collapse, atp=1/(2«a), against the corresponding points ¢,.1— ¢, by their respective infinitesimal incrementip
originally located in the subinterval 1/ <p<1l/a, via a andd¢, and finally write an expression valid in the vicinity
sequence of inverse tangent bifurcations. Meanwhile, thef am=0 chain:dp/d¢= —k sin(¢)/f(p). Then, with obvi-
points placed externally to the interval (¥} as well as the ous notation, one obtains an expression for the separatrix of
points of the pairm=0, simply approach each other but the lower chain:

never touch. We point out that although the latter two types

of fixed points never undergo an inverse tangent bifurcation, Psep

their manifolds can naturally undergo reconnection pro- J f(p)dp=k(1+cod ¢sep). )
cesses. In previous work&] them=1 case has been inves-

tigated. It has been shown that when chaos is absent, in the The upper separatrix of thepf=0,¢,= ) fixed point
sense that elliptic points of the various chains have not yetouches the [§,= 1/a, ¢,=0) fixed point of the correspond-
period doubled to chaos, initial conditions at negative valuesng upper chainsee Fig. 1 when

of p do not move up to positive values unless the separatrix

layers of the two chains corresponding to time=1 reso- k=k:=1/(1227); ©)
nances touch each other. In addition, it has been argued that

for those situations where the elliptic fixed points have al-such a value fok is also known as the reconnection thresh-
ready undergone full cascades of period doublings, recorPld in regular regimes. We can now draw Fig. 2. The figure
nection becomes a meaningless conddpt We now pro- IS similar to the corresponding figures shown in Réts4].
ceed to show that the concept can still be useful in thosét simultaneously displays the threshold and period doubling
cases; even under chaotic conditions, some noticeable effectgrves in the parameter space, with the threshold curve ex-
resulting from manifold rearrangements can be in fact obtended into the chaotic regime. The period doubling curve, in
served. Specifically, we shall show that after what could béhe m=0 case analyzed here, is simply a horizontal line at
best called a reconnectionlike process, diffusion is enhanceg=4. It is thus seen that, for values af below a«~0.144,
from low to higher values.

Let us focus the discussion on tihre=0 case, because this 9 — T
resonance is the largest one in the system. The linear stability
of the fixed points can be examined from the eigenvalue of i
the linearized map around the fixed points=[(2— ) Tl k=1/(12 o) - threshold curve
+(k—2)%2—4]/2, with k=cos(})(1—2ap¥)k. For a reak L ]
(compley, the corresponding fixed point is unstaldtable. k 5 1 .
One then sees that for the chain locategpat=0, the fixed ]
point at ¢5 =7 is always unstable, while that @ =0 is k=4 - period doubling line
unstable only whetk>4, being stable for &k<4. As for i
the chain ap} = 1/a, the point atp} =0 is always unstable, |
while that at¢y = is unstable wherk>4; in both cases, 1 A R RS
destabilization occurs via period doubling of the elliptic 0.10 0.12 0.14 0.16 0.18
points. One can also make an estimate of the condition to be

. . . o
observed for separatrix touching. To do so, let us first imag-
ine that we are working in a situation whekds small and FIG. 2. Parameter space () for the period Im=0 resonance,
the dynamics is therefore mostly regular. What happens the#and the relevant threshold curves.
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FIG. 3. The rearrangements of
stable and unstable manifolds in a
deeply chaotic regime for which
k=5.
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period doublings occur before reconnection. Previous workstable manifold of the hyperbolic point of the lower chain

have focused interest on the regiei 0.144, because in that makes a direct connection with the stable manifold of the
region one could clearly speak in terms of reconnection—upper chain. This leads to the opening of a new diffusive
recall that in this region reconnection takes place before peshannel connecting the regions located below the lower
riod doublings. In the present paper we shall concentratehain and above the upper chain. In other words, although
efforts to see what happens deep into chaotic regimes whesne is in a deep chaotic regime since the original elliptic
a<<0.144. points have fully period doubled to chaos, noticeable

To start the investigation, let us consider the vicinity of changes can be expected as a result of clear alterations on the
the threshold curve at=5. For this value ofk, elliptic  topology of the manifolds. This behavior of the manifolds is
points have been totally destroyed by full cascades of periotather conservative in the sense that while the elliptic points
doublings. Therefore, as we increase the theoretical re- have bifurcated, the manifolds still try to preserve some as-
connection threshold can be attained while the system regpects of integrability. It appears that this feature takes place
mains in a deep chaotic regime. Let us try to examine howecause, near the midpoint between the two chains, the or-
the relevant manifolds of then=0 resonances behave in bital frequency attains an extremufi(p)/dp=0 in view of
phase space. The analysis is made with the help of the pangl®nmonotonicity. As a result, the local dynamics is relatively
of Fig. 3, where we focus attention on the upper unstable antinear, and nonintegrable effects are relatively smaller than in
lower stable manifoldgrespective orientations indicated by other regions of the phase-space.
arrows of the originally hyperbolic pointgpoints indicated We now proceed to show that reconnections in chaotic
by black dot$ of the lower and upper chains, respectively; inregimes may have a direct influence on macroscopic pro-
order to draw the manifolds, we launch 1000 initial condi-cesses such as diffusion. We actually measure a fraction of
tions along the linearized manifolds, iterating the dynamicgarticles that are transmitted across the region where
forward or backward according to the case. df(p)/dp~0 in a numerical experiment that goes as fol-

First of all we note that in integrable cases, separatricelows.
describe homoclinic loops. Now, even in our nonintegrable A set of 1000 initial conditions is launched in the region
case, whenx is small it is seen that the tendency of the below the lower reconnecting chain, and iterated many
unstable manifold of the lower chain is to follow the ho- times. All particles arriving at the region above the upper
moclinic loop of the integrable approximation. Of course,
due to the nonintegrable features, the unstable manifolc
eventually starts to execute increasingly large oscillations af-
ter it first intersects the stable manifold of the same point. As
the orbit is about to complete the homoclinic loop the oscil-
lations grow, and as the oscillations grow it may happen thatg oz |
the unstable manifold of the lower chain crosses the stableg
manifold of the upper chain as well. But what must be ob- g
served here is that this latter intersection occurs only after thes
stable manifold of the lower chain crosses the unstable mani%_;
fold of the same lower chain many times. In this situation § %' [
one can look at the process as resembling the integrable cas
although, as mentioned before, one is in a deeply chaotic
regime.

Then, when one increases the valueagfthe overall to- , , , ‘
pology of manifold crossings appears to undergo a substan 008 0.10 0.12 0&4 016 018 020
tial change. This can be observed in Figb)3 where it is
seen that this change in topology is in fact very similar to FIG. 4. Transmission fraction as a function af in chaotic
what happens in the purely integrable model. Here the unregimes.
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FIG. 5. Poincareplot for k
=5. «=0.10 in (@) and 0.16 in
(b).
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reconnecting chain are reinjected into the initial lower re- In Fig. 5, we finally display the surface of sections of 20
gion, to create a steady state in the long run. The simulatiotrajectories initially placed ap=—2.0 with a uniform dis-

is optimized by reflecting particles that move into the regiontribution along¢. Figure %a) shows a value for prior to
below the injection momentum= —2.0. The mental picture  the reconnectiong=0.10, and Fig. &) a value fora past
one can form of the system is that of a multicomponent gaghe reconnection threshold;=0.16. The alterations in the
placed in a vessel divided by a semipermeable membrangtusive pattern suggested by all the previous analysis can
whose role is played by the reconnecting chains. The gas i§e seen in those figures as well, while in Figa)sthe par-
placed below the lower chain, and some of the particles arg.jes remain mostly in the lower region. In Fig(th par-

?ble to crloss over up to rt]he regl?n zbovte tthe upé)er chain. Aﬁcles can be easily transmitted across the barrigr-a0.
Ime evolves, one reacnes a steady state, and We Measurer, o, mmarize, in this paper we have investigated the ef-

transmission by computing the number of particles in thefect that reconnections involving unstable manifolds of

upper region divided by the total number of particles. . ; .
Figure 4 shows the fraction of particles transmitted afterdeeply chaotic regimes can have on some macroscopically

many iterations 1300 iteratel versusa, for k=4.5,6 observable features like particle diffusion. We have used a
and 7. In this range o, as suggested by i:ig > the,re’ is’ no Nonmonotonic map to create reconnecting chains. Examining
KAM curve in the phasé space, except in the dséé; even & pa(ticular family of fixed points for whicim=0 in the .

in this case, however, all the separatrix layers are alread otation of the text, we have seen that the _topology of mani-
chaotic and our discussion applies. In Fig. 4, we see an infolds of unstable fixed points may have a similar behavior to
crease in particle transmission starting at a valuex gfear that in an integrable approximation. As we vary convenient

: ; - i ifferent chains of islands can be
the one corresponding to the integrable reconnection. Th@arameters, manifolds of diff i
A . . Clearly seen to undergo a rearrangement process even in deep
reconnecting value of can be evaluated analytically using

Eq. (2). For k=4,5,6, and 7, one obtaing=0.144,0.129, chaotic regimes.
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