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Manifold reconnection in chaotic regimes
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In this paper we extend the concept of separatrix reconnection into chaotic regimes. We show that even
under chaotic conditions one can still understand enhanced diffusion in phase space in terms of relatively
smooth rearrangements of stable and unstable manifolds of unstable fixed points.@S1063-651X~98!04112-9#

PACS number~s!: 05.45.1b
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Two-dimensional nonmonotonic conservative maps
recognized to be of relevance in modeling a number of n
linear systems, for instance, laser acceleration of char
particles@1–6#, and the nonlinear flow of magnetic field line
in fusion machines such as tokamaks and others@7,8#. As
opposed to more traditional monotonic versions, nonmo
tonic maps are characterized by frequency curves that are
monotonic functions of the action variable@9#. In laser ac-
celerators, nonmonotonicity arises as a result of the rela
istic mass variation of the accelerating particles@5#; in toka-
maks, it arises as a result of the geometrical peculiaritie
the relevant background magnetic fields. In any case, n
monotonicity has a strong influence on the types of bifur
tions that can occur in the associated nonlinear dynamic

Period doubling cascades of periodic orbits generally p
cede a transition to chaotic regimes of these orbits, but
gent bifurcations bear no direct relationship to nonintegra
ity. Indeed, it has been argued that some of the effe
preceding a tangent bifurcation even become meaningles
nonintegrable regimes@1#. To analyze the subject, consid
the process depicted in the integrable case of Fig.~1! @2#.
Two chains of fixed points undergo a reconnection, start
from the leftmost panel. Before a tangent bifurcation wh
elliptic fixed points collapse against hyperbolic points, t
separatrices defining the upper chain undergo a reconne
process with those defining the lower chain—this is seen
Fig. 1~b!. It is precisely due to the smoothness caused
integrability that the reconnection can be seen so clea
This is why reconnection is thought to be of more relevan
in integrable cases. In contrast, the process is generally
garded as of little significance in chaotic regimes becaus
those situations all separatrices—which shall be corre
called stable and unstable manifolds—would be already
terlaced with little global response as relevant control para
eters are varied. Speaking in more precise terms, effects
sociated with reconnections are thought to be unobserv
when the elliptic fixed points of the reconnecting chains u
dergo full cascades of period doublings,beforeany sort of
mutual contact of the relevant manifolds takes place.

While reconnections, as defined in Ref.@1#, do not occur
in fully chaotic regimes, topological rearrangements of sta
and unstable manifolds are possible. We shall use the t
‘‘manifold reconnection’’ to describe such processes. W
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happens is that even in chaotic regimes the unstable or s
manifolds of originally hyperbolic points may still make
transition from a situation where their mutual crossings
absent—or, actually, relatively infrequent—to a situati
where the mutual crossings become very frequent. We s
illustrate the process with a set of figures from which o
will be able to see that this change in topology is reminisc
of the corresponding behavior of regular regimes. The m
roscopic result of this type of transition is that as soon as
crossings become frequent, stochastic diffusion undergoe
enhancement from slower to faster rates.

From this point on, the discussion relies on more techn
grounds. Therefore here we introduce the model map
shall be working with. The map is called the nonmonoton
twist map, and reads

pn115pn2k sinf n , fn115fn1 f ~pn11!, ~1!

where (p,f) is a pair of discrete canonical variables—p rep-
resenting an action andf a 2p-periodic angular
coordinate—and where the map is sympletic. Functionf (p)
is of foremost importance here. It is in fact a measure of
frequency with which the discrete orbits move on the (p,f)
phase space. In standard monotonic maps it readsf (p)5p,
but, as we wish to incorporate nonmonotonic features,
add a quadratic term such thatf becomesf (p)5p2ap2 as
in Ref. @1#. In this case one has effectively a nonmonoton
frequency curve with maximum located atp51/(2a), where
d f(p)/dp50. Map ~1! has several families of fixed points
Let us focus here on the first order family~period 1 orbits!
which is characterized bypn115pn andfn115fn12mp,
with m an arbitrary positive or negative integer; we sh
refer to the fixed points as (pm* ,fm* ). Equation~1! informs us
that the fixed points are located atfm* 50,p and pm* 5@1
6A128mpa/(2a)#. In this case of period 1 orbits, let u
have a brief look at the distribution of the various fixe
points over the phase space. Form50 one has four points
located atpo* 50, 1/a. If m.0 the fixed points lie in the
finite interval 0,p,1/a, and if m,0 the points lie in any
of the intervals2`,p,0 or 1/a,p,1`. The existence
of points located in the finite interval must satisfy the con
tion m,1/(8pa), so it may well happen that no fixed poin
can actually be found there ifa is large enough. What hap
8013 © 1998 The American Physical Society



ian of the

8014 PRE 58BRIEF REPORTS
FIG. 1. Reconnection in a purely integrable case. The figure is constructed with an integrable one-degree-of-freedom Hamilton
type H5p2/22ap3/32k cosf with (p,f) as continuous canonical variables;k55 anda50.10 in ~a!, 0.129 in~b!, and 0.16 in~c!. p is
nondimensional, andf is given in degrees.
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pens is that asa grows from some small value, all the fixe
points originally located in the subinterval 0,p,1/(2a),
collapse, atp51/(2a), against the corresponding poin
originally located in the subinterval 1/(2a),p,1/a, via a
sequence of inverse tangent bifurcations. Meanwhile,
points placed externally to the interval (0,1/a), as well as the
points of the pairm50, simply approach each other b
never touch. We point out that although the latter two typ
of fixed points never undergo an inverse tangent bifurcat
their manifolds can naturally undergo reconnection p
cesses. In previous works@1# them>1 case has been inves
tigated. It has been shown that when chaos is absent, in
sense that elliptic points of the various chains have not
period doubled to chaos, initial conditions at negative val
of p do not move up to positive values unless the separa
layers of the two chains corresponding to them51 reso-
nances touch each other. In addition, it has been argued
for those situations where the elliptic fixed points have
ready undergone full cascades of period doublings, rec
nection becomes a meaningless concept@1#. We now pro-
ceed to show that the concept can still be useful in th
cases; even under chaotic conditions, some noticeable ef
resulting from manifold rearrangements can be in fact
served. Specifically, we shall show that after what could
best called a reconnectionlike process, diffusion is enhan
from low to higher values.

Let us focus the discussion on them50 case, because thi
resonance is the largest one in the system. The linear stab
of the fixed points can be examined from the eigenvalue
the linearized map around the fixed points,l5@(22k)
6A(k22)224#/2, with k[cos(fo* )(122apo* )k. For a realk
~complex!, the corresponding fixed point is unstable~stable!.
One then sees that for the chain located atpo* 50, the fixed
point at fo* 5p is always unstable, while that atfo* 50 is
unstable only whenk.4, being stable for 0,k,4. As for
the chain atpo* 51/a, the point atfo* 50 is always unstable
while that atfo* 5p is unstable whenk.4; in both cases,
destabilization occurs via period doubling of the ellip
points. One can also make an estimate of the condition to
observed for separatrix touching. To do so, let us first im
ine that we are working in a situation wherek is small and
the dynamics is therefore mostly regular. What happens t
he
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is that the advance within any particular resonant isla
tends to be slow. One can thus approximatepn112pn and
fn112fn by their respective infinitesimal incrementsdp
anddf, and finally write an expression valid in the vicinit
of a m50 chain:dp/df52k sin(f)/f(p). Then, with obvi-
ous notation, one obtains an expression for the separatr
the lower chain:

Epsep
f ~p!dp5k„11cos~fsep!…. ~2!

The upper separatrix of the (po50,fo5p) fixed point
touches the (po51/a,fo50) fixed point of the correspond
ing upper chain~see Fig. 1! when

k5kt[1/~12a2!; ~3!

such a value fork is also known as the reconnection thres
old in regular regimes. We can now draw Fig. 2. The figu
is similar to the corresponding figures shown in Refs.@1,4#.
It simultaneously displays the threshold and period doub
curves in the parameter space, with the threshold curve
tended into the chaotic regime. The period doubling curve
the m50 case analyzed here, is simply a horizontal line
k54. It is thus seen that, for values ofa below a;0.144,

FIG. 2. Parameter space (a,k) for the period 1m50 resonance,
and the relevant threshold curves.
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FIG. 3. The rearrangements o
stable and unstable manifolds in
deeply chaotic regime for which
k55.
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period doublings occur before reconnection. Previous wo
have focused interest on the regiona.0.144, because in tha
region one could clearly speak in terms of reconnection
recall that in this region reconnection takes place before
riod doublings. In the present paper we shall concent
efforts to see what happens deep into chaotic regimes w
a,0.144.

To start the investigation, let us consider the vicinity
the threshold curve atk55. For this value ofk, elliptic
points have been totally destroyed by full cascades of pe
doublings. Therefore, as we increasea, the theoretical re-
connection threshold can be attained while the system
mains in a deep chaotic regime. Let us try to examine h
the relevant manifolds of them50 resonances behave
phase space. The analysis is made with the help of the pa
of Fig. 3, where we focus attention on the upper unstable
lower stable manifolds~respective orientations indicated b
arrows! of the originally hyperbolic points~points indicated
by black dots! of the lower and upper chains, respectively;
order to draw the manifolds, we launch 1000 initial con
tions along the linearized manifolds, iterating the dynam
forward or backward according to the case.

First of all we note that in integrable cases, separatri
describe homoclinic loops. Now, even in our nonintegra
case, whena is small it is seen that the tendency of th
unstable manifold of the lower chain is to follow the h
moclinic loop of the integrable approximation. Of cours
due to the nonintegrable features, the unstable mani
eventually starts to execute increasingly large oscillations
ter it first intersects the stable manifold of the same point.
the orbit is about to complete the homoclinic loop the os
lations grow, and as the oscillations grow it may happen t
the unstable manifold of the lower chain crosses the sta
manifold of the upper chain as well. But what must be o
served here is that this latter intersection occurs only after
stable manifold of the lower chain crosses the unstable m
fold of the same lower chain many times. In this situati
one can look at the process as resembling the integrable
although, as mentioned before, one is in a deeply cha
regime.

Then, when one increases the value ofa, the overall to-
pology of manifold crossings appears to undergo a subs
tial change. This can be observed in Fig. 3~b!, where it is
seen that this change in topology is in fact very similar
what happens in the purely integrable model. Here the
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stable manifold of the hyperbolic point of the lower cha
makes a direct connection with the stable manifold of
upper chain. This leads to the opening of a new diffus
channel connecting the regions located below the low
chain and above the upper chain. In other words, altho
one is in a deep chaotic regime since the original ellip
points have fully period doubled to chaos, noticeab
changes can be expected as a result of clear alterations o
topology of the manifolds. This behavior of the manifolds
rather conservative in the sense that while the elliptic po
have bifurcated, the manifolds still try to preserve some
pects of integrability. It appears that this feature takes pl
because, near the midpoint between the two chains, the
bital frequency attains an extremumd f(p)/dp50 in view of
nonmonotonicity. As a result, the local dynamics is relative
linear, and nonintegrable effects are relatively smaller tha
other regions of the phase-space.

We now proceed to show that reconnections in chao
regimes may have a direct influence on macroscopic p
cesses such as diffusion. We actually measure a fractio
particles that are transmitted across the region wh
d f(p)/dp;0 in a numerical experiment that goes as fo
lows.

A set of 1000 initial conditions is launched in the regio
below the lower reconnecting chain, and iterated ma
times. All particles arriving at the region above the upp

FIG. 4. Transmission fraction as a function ofa in chaotic
regimes.
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FIG. 5. Poincare´ plot for k
55. a50.10 in ~a! and 0.16 in
~b!.
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reconnecting chain are reinjected into the initial lower
gion, to create a steady state in the long run. The simula
is optimized by reflecting particles that move into the reg
below the injection momentump522.0. The mental picture
one can form of the system is that of a multicomponent
placed in a vessel divided by a semipermeable memb
whose role is played by the reconnecting chains. The ga
placed below the lower chain, and some of the particles
able to cross over up to the region above the upper chain
time evolves, one reaches a steady state, and we me
transmission by computing the number of particles in
upper region divided by the total number of particles.

Figure 4 shows the fraction of particles transmitted af
many iterations (;1300 iterates!, versusa, for k54,5,6,
and 7. In this range ofk, as suggested by Fig. 2, there is n
KAM curve in the phase space, except in the casek54; even
in this case, however, all the separatrix layers are alre
chaotic and our discussion applies. In Fig. 4, we see an
crease in particle transmission starting at a value ofa near
the one corresponding to the integrable reconnection.
reconnecting value ofa can be evaluated analytically usin
Eq. ~2!. For k54,5,6, and 7, one obtainsa50.144,0.129,
0.118, and 0.109, respectively. It is also observed that
transmission reaches a plateau after an ascending stage
sumably this happens when the reconnection is fully co
pleted. Note that the transmission curves gradually disp
leftward as one increases the value ofk. This kind of behav-
ior is embodied in relation~3!, from which is seen that large
k’s imply smallera ’s. We note that the ascending range
both curves are relatively smooth and are not sharply loca
at the reconnecting value ofa, since this critical number is
calculated within an integrable approximation.
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In Fig. 5, we finally display the surface of sections of 2
trajectories initially placed atp522.0 with a uniform dis-
tribution alongf. Figure 5~a! shows a value fora prior to
the reconnection,a50.10, and Fig. 5~b! a value fora past
the reconnection threshold,a50.16. The alterations in the
diffusive pattern suggested by all the previous analysis
be seen in those figures as well, while in Fig. 5~a! the par-
ticles remain mostly in the lower region. In Fig. 5~b! par-
ticles can be easily transmitted across the barrier atp;0.

To summarize, in this paper we have investigated the
fect that reconnections involving unstable manifolds
deeply chaotic regimes can have on some macroscopic
observable features like particle diffusion. We have use
nonmonotonic map to create reconnecting chains. Examin
a particular family of fixed points for whichm50 in the
notation of the text, we have seen that the topology of ma
folds of unstable fixed points may have a similar behavior
that in an integrable approximation. As we vary convenie
parameters, manifolds of different chains of islands can
clearly seen to undergo a rearrangement process even in
chaotic regimes.
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